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Cometary outgassing produces a non-gravita3onal (NG)
accelera3on and torque that have a measurable effect on
comet trajectories and spin states

Comparing ac3vity models to RoseBa datasets helps us
understand 67P’s surface ac3vity paBern and gas/nucleus
coupling, aiding our understanding of cometary ac3vity in
general

Previous work (see MoBola et al. 2020, ABree et al. 2019, etc.)
has shown a 3me-varying ac3vity, above that expected from
varying heliocentric distance, for 67P

Here we extend the work of ABree et al. 2019 and inves3gate
two different ac3vity paBerns in space and 3me, comparing
their fit to the RoseBa data

https://www.aanda.org/articles/aa/abs/2019/10/aa34415-18/aa34415-18.html
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Preliminary Results
Attree et al. 2019 solution with constant increase for all regions. Combined !" = 136, 
Production !" = 3.54, Range !" = 159, Torque !" = 0.78

https://www.aanda.org/articles/aa/abs/2019/10/aa34415-18/aa34415-18.html
https://www.aanda.org/articles/aa/abs/2019/10/aa34415-18/aa34415-18.html


Results
Geological regions solution: subregions, as defined in 
Thomas et al. 2018, grouped according to Thomas et al. 
2015 type, with ‘Smooth’ and ‘Rocky’ types allowed to vary 
with time. Combined !" = 113
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https://youtu.be/2c0lv0KhB9o
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Conclusions

• Rose3a datasets can be matched with Lme-varying EffecLve AcLve FracLon over 67P’s surface; 
here, for the first Lme, Led to different morphological terrain types

• Best-fit soluLon has different Lme-variaLon for different terrain types, with ‘Rocky’ and ‘Smooth’ 
terrains having generally more acLvity than ‘Dusty’, ‘Bri3le’, and ‘Depression’ terrains

• This likely reflects different depths of dust coverage on different terrains and different amounts of 
dust liiing over Lme via outgassing

• ‘Smooth’ terrain may be acLve due to wet airfall (e.g. pieces of transported acLve ‘Rocky’ 
material), whereas ‘Dusty’ terrains may be quenched

Future Work
• Investigate changes in comet rotation axis (in addition 

to torque)
• Feed-in terrain types result into more complex thermal 

models (e.g. Gundlach et al 2020, Skorov et al. 2020)


